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SUMMARY
Establishing a seasonal forecast for soil water storage (SWS) on a smaller 
spatial scale is of great interest for the agricultural sector since this could 
reduce uncertainty and facilitate decision making. On the other hand, we should 
consider that variations in soil moisture are due partly to small scale influences 
and to soil-specific features such as the capacity of the field. The purpose of this 
work is to propose a statistical forecasting methodology for different soil water 
availability scenarios in the Pampean region. For this purpose, monthly soil 
water storage values were calculated SWS for the INTA meteorological station, 
Pergamino (Buenos Aires, Argentina). Data was gathered using the Operating 
Hydrological Balance for Agro (OHBA) for October, November and December 
during 1979-2016. Relations between SWS and climate forcing on a monthly, 
bimonthly and quarterly scales were analyzed. Statistical forecasting models 
were developed for each month using the loop regression, a modern regression 
technique that uses cross-validation k fold. The efficiency analysis of different 
models takes into account the adjusted values of square correlation coefficient 
(R2

adj) and cross-validation coefficient (CV). These models appropriately 
represent the SWS values, particularly the most extreme ones.
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RESUMEN
En el sector agrícola, disponer de un pronóstico estacional del almacenaje del 
agua del suelo (AAS) a una escala espacial más pequeña es de gran interés 
ya que ello podría reducir la incertidumbre y facilitar la toma de decisiones. El 
objetivo de este trabajo fue proponer una metodología de pronóstico estadístico 
para los diferentes escenarios de disponibilidad de agua del suelo en la 
región pampeana. Para este propósito, se calcularon los valores mensuales 
de almacenaje de agua del suelo AAS para la estación meteorológica INTA 
Pergamino (Buenos Aires, Argentina). Dicha información se estimó utilizando el 
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INTRODUCTION

The role of climate forecasts in agricultural 
planning enables the mitigation of the risk of 
future adverse conditions or the benefit of taking 
advantage of them when they are favorable. 
However, despite a diverse and growing offer 
of this kind of information, its incorporation into 
decision-making is not yet widespread. Seasonal 
climate forecasts are provided by some institutions 
(Climate Prediction Centre, Inter-American Institute, 
ECMWF, CPTEC, UKMO, among others), and for 
Regional Climate Outlook Forums that are held 
in different regions of the world. They produce 
regional climate forecasts of monthly to quarterly 
precipitation and temperature. The availability of 
agro-climatic information, not only in real time but at 
the beginning of the agricultural campaign, in user-
friendly formats which show the risk of occurrence 
of extreme events, is relevant, both for productive 
systems and for subsistence agriculture in large 
regions of the country.

The Pampas region (Hall et al.,1992) is located 
in central eastern Argentina and its economic 

resources are based highly on agriculture. 
Agricultural production depends on temperature 
and precipitation and the strategies adopted, 
which usually take into account a normal behavior 
of the climate variables. The physical basis of 
seasonal climate predictability lies in the fact 
that slow variations in the boundary conditions of 
the earth influence the atmospheric circulation. 
To address this issue, dynamical and statistical 
models are derived but there is still a great deal 
of uncertainty about the efficiency of dynamical 
models, especially in restricted areas and, in those 
cases, statistical forecasts seem to have the best 
performance. Many authors have pointed out the 
difficulties detected when forecasting seasonal 
climate (Barnston et al., 2005; Leetmaa, 2003; 
Coelho et al., 2005; Kumar, 2006) and an evaluation 
of seasonal climate forecast in South America has 
been done by some authors (Goddard, 2003; 
Nobre et al., 2005; Barreiro, 2009). 

The statistical forecasts are based on the 
detection of the relation between climate variables 
and circulation patterns previously observed. 
Many authors have advanced in the development 

Balance Hidrológico Operacional para Agro (BOHA) para los meses de octubre, 
noviembre y diciembre durante 1979-2016. Se analizaron las relaciones entre 
AAS y los forzantes climáticos en escalas mensual, bimestral y trimestral. Los 
modelos de pronóstico estadístico se desarrollaron para cada mes utilizando la 
regresión de Lasso, una técnica de regresión moderna que utiliza la validación 
cruzada para seleccionar los mejores predictores El análisis de la eficiencia 
de diferentes modelos tiene en cuenta los valores ajustados de coeficiente de 
correlación cuadrado (R2

adj) y coeficiente de validación cruzada (CV). Estos 
modelos representan adecuadamente los valores de AAS, particularmente los 
más extremos.
Palabras clave: Balance hídrico; Predictores meteorológicos, forzantes 
climáticos
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of statistical models to predict seasonal climate 
variables in some regions of Argentina. For 
example, statistical forecasts were developed for 
the Standardized Precipitation Index for the rainy 
season in the Comahue region (González and 
Dominguez 2012, González 2015), for seasonal 
rainfall in the Argentine Chaco region (González 
et al., 2012), for the Bermejo river basin (González 
and Murgida, 2012), for the Patagonian region 
(González and Herrera, 2014) and for snow in 
the Central Andes in Argentina (Bisero et al., 
2017; Barreiro and Díaz 2011) which showed 
that seasonal forecast in South America can be 
improved if the teleconnection processes and 
the regional earth-atmosphere interactions are 
adequately represented. 

Mo and Berbery (2011) noted that local factors 
such as the seasonal cycle, soil moisture and 
moisture transport provide the initial conditions for 
extreme events to develop and persist, but do not 
trigger droughts or persistent waves. The persistent 
nature of drought and wet periods are linked by 
large-scale low frequency forcing, such as sea 
surface temperature anomalies. In particular, soil 
moisture is a key variable of the earth-atmosphere 
system that not only reflects the soil conditions 
of a given region (for example, as an indicator of 
agricultural drought), but also has the potential to 
influence the atmospheric variability in controlling 
surface water and energy balances, from synoptic 
to seasonal time scales (Kanamitsu et al., 2003; 
Seneviratne et al., 2010).

The interannual variability of rainfall has a 
significant impact on agriculture.  Reserve or 
storage of water in the soil is determined by 
the interaction between the supply of water, 
the infiltration and retention in the soil, and the 
evapotranspiration. Soil moisture is characterized 
by the field capacity, the permanent wilting point 
and the available water content. According to 
Allen et al. (1998), soil water availability concerns 
to the capacity of a soil to retain water available 
for plants. Soil water availability (SWA) is derived 
from two important physical-hydric properties of 
soils: moisture at field capacity (FC), the amount 
of water retained by a well-drained soil after rainfall 
or irrigation application and moisture at wilting 
point (WP), the water content at which plants will 
wilt. (SWA) is the difference between soil moisture 
at (FC) and soil moisture at (WP). Thus, actual soil 
water storage (SWS) can range between moisture 
content at WP and FC.

The aim of this paper is to develop a statistical 
forecast model for SWS in a location in the rolling 
Pampas in summer. In October and November, 
the soil water requirement by wheat reaches the 

highest values and frequently soil water content 
due to rainfall is not enough. Therefore, the SWS 
forecast may be a good tool for decision making.

DATA AND METHODOLOGY

 Data

Monthly SWS data series was calculated for 
Pergamino meteorological station (33 ° 56 ‘ S, 60 ° 
33 ‘ W, 56 m.a.s.l.), by the Operational Hydrological 
Balance Model for Agro (BOHA, 2012) for the period 
1979-2016. Meteorological data from the National 
Institute of Agricultural Technology (INTA) was 
used. The station is located in the Regional Center 
Buenos Aires North (RCBAN), which has an area of 
just over 11 million ha, of which approximately 5.8 
million ha are lands with agricultural capacity with 
2.3 million ha for livestock-agricultural and the rest 
are cattle and forestry lands. 

The model computes the amount of water 
contained in the soil profile which can be absorbed 
by the roots, allows the growth of the crops and 
allows the development of water available maps in 
the soil. The general water balance equation in the 
BOHA is:

PP − AE − ΔSWS − EXC = 0           (1)
where PP is precipitation, AE is actual 
evapotranspiration, ΔSWS is soil water storage 
change and EXC is precipitated water that exceeds 
the maximum storage capacity of an agricultural 
land. Additional information on the methodology 
and characteristics can be found in Fernández 
Long et al. (2012).

Pergamino, representative site of the wheat 
area II north (Zarrilli, 1997), and the months 
October to December, have been considered for 
this study. Two relevant wheat yield components, 
the number of grains per spike and the 1000-grain 
weigh are set in October (heading/anthesis) 
and between October 15th and November 15th, 
respectively (Garcia et al., 2018). In December, 
wheat reaches its physiological maturity. It should 
be noted that the crop soil water requirements are 
different in each month. In October and November, 
the soil water requirement by the crop reaches the 
highest values and frequently soil water content 
due to rainfall is not enough. Thus, it is crucial to 
know the soil water storage SWS to predict the soil 
moisture availability for the crop in Pergamino. 

Under normal production conditions, all extensive 
crops are exposed to soil water deficiencies. This 
drought conditions strongly affect yield components 
depending on the overlapping with critical periods, 
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such as that determining the number of grains.

Therefore, knowing the dynamic of an 
agro meteorological variable such as SWS, it will 
be a double fold: a better crop management and 
the implementation of adaptation measures aimed 
at reducing the impacts of climate variability on 
agriculture activities

The ERA-Interim reanalysis of the ECMWF with 
a 1.25° horizontal resolution, available in a global 
coverage since 1979 (Dee et al., 2011) was used in 
the present study. The linear correlations between 
SWS and one, two and three months lagged 
meteorological variables related to precipitation 
and temperature (González et al., 2016), were 
calculated and the predictors were defined by 
taking into account the areas with significant 
correlation using 95% confidence level. 

The variables considered were: geopotential 
heights of the 1000 hPa, 500 hPa and 200 hPa 
pressure levels (hgt1000, hgt500 and hgt200, 
respectively), zonal and meridional wind 
components at 850 hPa (u850 and v850), sea 
surface temperature (sst), volumetric soil moisture 
(vsl) available for two soil depth layers, the first 
from the surface to 0.07m (vsl1.1) and the second, 
0.21m thick with the top in 0.07m and the bottom in 
0.28m (vsl1.2) and the total column of water in the 
atmosphere (tcw).

 Methodology

The monthly relationship is defined as the 
correlation between SWS for October- November- 
December and any selected variable from the 
previous month this is September-October-
November, respectively); the bimonthly-correlation 
is defined as the correlation with any selected 
variable averaged for the two previous months 
(August-September/ September-October/October-
November) and the quarterly correlation is defined 
as the correlation with the quarter average (July-
August-September / August-September-October 
/ September-October-November). The set of 
potential predictors, all physically consistent 
and independent from each other to avoid multi 
collinearity, were defined as the average value of 
the variables in the region where the correlation 
coefficients R were greater than 0.37 (significant 
with a confidence level of 95% using a normal test).

Statistical forecast models were developed using 
multiple linear regression which .is a regression 
with a single predicted value, y, and more than one 
predictor (x) variables:

(2)

where p is the number of predictor variables.
The objective of the selection of potential 

predictors is to find a model that fits well with the 
data and, at the same time, it is simple, produces 
and provides robust efficiency coefficients.

A useful method in the selection of explanatory 
variables of the regression models is the penalized 
least squares. The regularized regression method 
used in this work is the regression called least 
absolute shrinkage and selection operator 
(LASSO). Proposed by Tibshirani (1996), LASSO 
minimizes the residual sum of squares to the sum 
of the absolute value of the coefficients if it’s less 
than a constant value:

or, equivalent 

(3)

  where s and ≥ 0 are constant parameters. The 
LASSO enables estimation and variable selection 
simultaneously in one step.

When there are many possible predictors, 
several models are generated and therefore it is 
necessary to evaluate which is the best statistical 
model predicting SWS. Evaluation of our predictions 
was done by computing the adjusted R2 (R2

adj), the 
leave-one-out cross-validation statistic CV and the 
Akaike’s Information Criterion (AIC). 

Adjusted R2 is explained as the proportion of 
total SWS variance that the model explains, given 
by:

 
(4)

where N is the number of observations, k is the 
number of predictors and R2 is the coefficient of 
determination. Using this improvement of R2, the 
best model will be the one with the largest value 
of R2

adj.
The leave-one-out cross-validation statistic CV is 

calculated using one subset (of n-1 data) as testing 
data and the remaining value as the training data. 
The CV is computed as:
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(5)

where ei is the residual obtained from fitting the 
model to all N observations and hi are the diagonal 
values of the projection matrix of the predicted 
matrix. The lower the CV value is, the coefficients 
of the models differ slightly, and the stability is 
guaranteed.

Akaike’s Information Criterion (AIC) offers an 
estimate of the relative information lost when a 
given model is used to represent the process that 
generated the data (Hyndman and Athanasopoulos, 
2018). It is defined as:

 

(6)

where N is the number of observations, k is the 
number of predictors and SSE is the sum of square 
errors. The model with the minimum value of the 
AIC is often the best model for forecasting.

These statistics are computed for the different 
models. The best models were defined as those 
with the lowest CV and AIC and the highest R2

adj. 
The skill of the best models is proved in a 

semi-quantitative way (Wilks, 2011).  Two series 
were considered: the SWS derived from OHBA 
(“observed values”) and the series resulting from 
the cross-validation method (“predicted values”). 
The observed and predicted SWS distributions 
were categorized in three equiprobable classes. 
The upper interval refers to values greater than 
the second tercile, labeled “above normal”, the 
values lower than the first tercile are called “below 
normal”, and “normal” refers to values greater than 
the first and lower than the second terciles. The first 
two categories refer to the driest and wettest soil 
conditions respectively.

Usually, verification data is displayed in a 
contingency table of absolute frequencies of the 
possible combinations of forecast and observation 
pairs (Wilks, 2011). The proposed categorization 
generated 3x3 contingency tables, which are 
converted into 2x2 tables considering the “event” 
and the “non-event” to evaluate the efficiency 
from the scalar attributes most widely used in the 
forecast literature. The Hit Rate (HR) index gives the 
proportion of events that were correctly forecasted. 
The probability of detection (POD) is defined as the 
fraction of those occasions when the forecast event 
occurred on the one which was also forecast. The 
best (POD) value is 100%. The false alarm relation 
(FAR) is the proportion of forecast events that fail to 
happen. The best (FAR) value is 0.

RESULT AND DISCUSSION  

 SWS average performance 

The average distribution, maximum values, 
minimum values and the standard deviation of SWS 
for the period 1979-2016 are shown in Figure 1. 

Figure 1. Seasonal soil water storage (SWS) in Pergamino. 
Boxplots indicate the central 50% interquartile range, the median, 
and the lower and upper bounds, the outliers (circles) and the 
mean (black square).

 The average values show an annual cycle with a 
maximum in winter and a minimum in summer, and 
most of its variability takes place from November 
to May. The average maximum value is 322.8 mm 
and the average minimum value is 108.8 mm. High 
SWS values are detected in the 1990s and very 
low SWS are registered especially in two different 
periods: from June to September 2008 (Scarpati 
and Capriolo, 2013) 

SWS trends are calculated using both the 
nonparametric Mann–Kendall test (Mann, 1945; 
Kendall, 1975) and the Sen method (Sen, 1968). 
Tests were performed for the 1979 -2016 period. 
Table 1 shows a positive trend 

In February, trend is significant at 99% confidence 
level, according to the Mann-Kendall test. This 
significant SWS increase could be the result of a 
change in the management of production systems, 
leading farmers to replace early planted for late-
planted maize. In the Pampean region, previous 
studies suggest that late sowing date determines a 
reduction in the potential corn crop yields (Otegui 
et al., 1996; Maddonni, 2012). However, in recent 
years, the productivity of maize for late sowing 
dates has experienced a sustained growth in the 
region, largely sustained because of the greater 
availability of water in February. Also, the fact that 
the first frost day in the region has shown a delay 
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(Fernández Long, et al., 2013) of early frosts, which 
is one of the most important restrictions for late 
maize (Maddonni, 2012).

Selection of predictors

Monthly, bi-monthly and quarterly linear 
correlation fields enabled the definition of a set of 
predictors over the area (180° W – 40° E and 20° 
N – 60° S). Figures 2a to 2c resume predictors that 

better estimated SWS for October, November and 
December.

In October (Figure 2.a), SWS is related to the 
hgt1000 in the Caribbean region. This result agrees 
with the one obtained by González and Barros 
(2002) when they explored the relation between 
the inter-annual variability of the South American 
monsoon and the inter-annual variability of spring 
precipitation in the subtropical Argentina. Vsl1.1 
of the previous month in Buenos Aires province 
is also an important SWS predictor. Therefore, the 
initial state of the water contained in the first layer 
of the soil affects the subsequent value. The high 
bi-monthly correlations between SWS and tcw over 
the location and the neighboring ocean portion 
and hgt500 over the Indian Ocean and the south of 
Africa are used to define other predictors. Clearly, 
the water in the atmosphere affects the possibility 
of in situ precipitation and the western circulation 
also affects the displacement and development of 
the systems that move like Rossby waves. 

Both hgt1000 over the Caribbean region and 
vsl1.1 over Buenos Aires province in the previous 
month are also SWS predictors in November 
(Figure 2.b). Besides, V850 on the Chilean coast 
has a positive correlation in a region associated 
with the South Pacific High. The bimonthly 
predictor included in the model is the hgt200 over 
the Pacific Ocean and the southern the Niño4 
region, indicating the influence of the jet stream 

Table 1. Trends in SWS for the period 1979–2016. Trend analysis 
with non-parametric Mann-Kendall test (Sen’s slope estimates 
and significance of Mann-Kendall test). *** for p < 0.001, ** for p < 
0.01, * for p < 0.05, + for p <0.1, NS for p > 0.1.

Month Sen’s slope estimate Significance
January 0.597 +
February 0.886 **
March 0.692 *
April 0.341 +
May 0.221 +
June -0.009 NS
July -0.068 NS
August -0.062 NS
September -0.152 NS
October -0.120 NS
November 0.169 NS
December 0.420 NS

Figure 2.a. Geographic areas used to define the October predictors of Soil Water Storage. Prefix S_ indicates September, prefix AS_ 
denotes August and September average.
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and the ENSO teleconnection over the SWS, 
over precipitation and, therefore, over SWS in the 
northern portion of the province.

SWS predictors in December spread over large 
areas (Figure 2.c). It is important to notice that 
hgt200 averaged the two previous months over the 

tropical Pacific Ocean influences SWS. Hgt1000 
over Argentina, the subtropical SST off the Brazilian 
coast, tcw over the tropical zone and the u850 over 
the Antarctic ocean are predictors defined the 
previous month. Statistical forecast models were 
developed using multiple linear regression. 

Figure 2.b The same as for (a) for November. Prefix O_ indicates October and prefix SO_ indicates September and October average.

Figure 2.c The same as for (a) for December. Prefix N_ denotes November and prefix NO_ denotes October and November average. 
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The statistical forecasting models and their 
efficiency

Table 2 Best model for October (SWR_Oct), November (SWR_
Nov) and December (SWR_Dec) and the efficiency coefficients 
cross-validation (CV), the Akaike’s Information Criterion (AIC), and 
the adjusted R-squared correlation coefficient (R2)

Best Model CV AIC R2

SWR_Oct = 0.0885 * S_hgt1000 + 
299.480 * S_vsl1 + 0.0579 * AS_
hgt500 + 3.843 * AS_tcw - 3193.70

469.08 235.60 0.523

SWR_Nov =    0.266 * O_hgt1000 
-10.171 *  O_v850 + 688.748 * O_
vsl1 + 0.106 * SO_hgt200 + 5.605 
* SO_tcw.1 + 31.961  *  SO_sst - 
8.756 *  SO_tcw.2 + 8.175 * SO_
tcw.3  -22986.7

519.98 232.30 0.726

SWR_Dec = -0.263* N_hgt200 
- 0.065 * N_hgt1000 + 39.978 
* N_sst + 8.533 * N_tcw - 3.477 
* N_v850 + 0.3466* ON_hgt200 - 
21870.42 

816.52 255.49 0.597

Table 2 shows the best forecasting models 
resulting from the cross-validation method for each 
month and their efficiency coefficients are also 
specified. The observed and forecast SWS time 
series are shown in Figure 3. 

All the models show R2
adj higher than 0.5 

(explaining more than 50% of the SWS variance). 
The models explain 60% of the SWS variance in 
December, 73% in November and 52% in October. 
However, the model in October is the most stable, 
as CV is lower than in November and December.  
The AIC values are similar in the three months. 

Figure 4 shows the percentage of observed 
and predicted values according to the categories 
defined. The forecasted and the observed values 
agree in more than 60% of the cases and the 
highest value (73.7%) is registered in November, 
the only month when cases which differ in two 
categories (2.6%) were registered.

The scalar attributes are summarized in Table 3. 
The values for the October model show the best 
values of POD (0.69), TS (0.60) and FAR (0.08) 
for below normal events. The model also exhibits 
good values of POD (0.69) and FAR (0.16) for the 
above normal category, although TS is not as high 
as expected. The model complies with the POD 
but has a very high FAR for the normal category. 
Emphasizing on the below/above categories, 
this model has the best performance on forecast 
extreme (driest / wettest) events.

The SWS forecasting model in November 
shows the highest Radj

2 (0.726) anthem lowest 
CV (519.98) and AIC (232.30), which suggests a 
great performance. For the below-normal category, 
the model has good POD (0.85) and FAR (0.08) 
attributes. For the above normal category, the 
model has better FAR (0.11) and worse POD than 
in the below normal case. In both categories the TS 
exceeds 0.5. No attribute is fulfilled for the normal 
category.

The SWS forecasting model in December shows 
the best Radj

2 (0.5970) and AIC (255.489), with low 
values of CV (859.3). The values of POD (0.62) and 

Figure 3. Observed (solid line) and forecasted (dashed line) 
SWS time series (a) for October, (b) for November and (c) for 
December. 

a)

b)

c)
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FAR (0.11) for the below normal category and POD 
(0.42) and FAR (0) for the above normal category 
are good. The efficiency of the model decreases for 
the normal category.

CONCLUSIONS

A SWS statistical forecasting model for a 
location, representative of an important agriculture 
region, was developed for each month (October-
November-December) in a typical location, using 
atmospheric and oceanic predictors that are usually 
correlated with precipitation and air temperature. 
Statistical forecasting models were developed for 
each month. Evaluation of our models was done by 
computing the efficiency statistics. The skill of the 
forecast was verified by computing some statistics 
like the thread score, the probability of detection 

and the false alarm ratio, which showed valuable 
results.

Development of statistical forecasting models 
implies an interdisciplinary approach and the 
opportunity to contribute to national institutes and 
agencies with relevant tools for decision-making 
related to the improvement of agricultural practices 
in the region.
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month where cases which differ in two categories (2.6%) were 
registered.
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